The analysis and impact of simulated high-resolution surface observations in addition to radar data for convective storms with an ensemble Kalman filter
نویسندگان
چکیده
Observing system simulation experiments are performed using an ensemble Kalman filter to investigate the impact of surface observations in addition to radar data on convective storm analysis and forecasting. A multi-scale procedure is used in which different covariance localization radii are used for radar and surface observations. When the radar is far enough away from the main storm so that the low level data coverage is poor, a clear positive impact of surface observations is achieved when the network spacing is 20 km or smaller. The impact of surface data increases quasi-linearly with decreasing surface network spacing until the spacing is close to the grid interval of the truth simulation. The impact of surface data is sustained or even amplified during subsequent forecasts when their impact on the analysis is significant. When microphysicsrelated model error is introduced, the impact of surface data is reduced but still evidently positive, and the impact also increases with network density. Through dynamic flow-dependent background error covariance, the surface observations not only correct near-surface errors, but also errors at the midand upper levels. State variables different from observed are also positively impacted by the observations in the analysis.
منابع مشابه
Error modeling of simulated reflectivity observations for ensemble Kalman filter assimilation of convective storms
[1] The impact of two different ways of modeling errors in simulated radar reflectivity data for observing system simulation experiments (OSSEs) with an ensemble Kalman filter is investigated. An error model different from the one used in earlier studies is introduced, and it specifies relative Gaussian-distributed errors in the linear domain of the equivalent radar reflectivity factor. This mo...
متن کاملAnalysis of a Tornadic Meoscale Convective Vortex Based on Ensemble Kalman Filter Assimilation of CASA X-band and WSR-88D Radar Data
ii Abstract One of the goals of the National Science Foundation Engineering Research Center (ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) is to improve storm-scale numerical weather prediction (NWP) by collecting data with dense X-band radar network which provides high-resolution low-level coverage, and by assimilating such data into NWP models. During the first spring storm...
متن کاملImpacts of Initial Estimate and Observation Availability on Convective-Scale Data Assimilation with an Ensemble Kalman Filter
The ensemble Kalman filter (EnKF) uses an ensemble of short-range forecasts to estimate the flow-dependent background error covariances required in data assimilation. The feasibility of the EnKF for convective-scale data assimilation has been previously demonstrated in perfect-model experiments using simulated observations of radial velocity from a supercell storm. The present study further exp...
متن کاملImpact of Configurations of Rapid Intermittent Assimilation of Wsr-88d Radar Data for the 8 May 2003 Oklahoma City Tornadic Thunderstorm Case
The operational WSR-88D Doppler radar network of the United States (Crum and Alberty 1993) has dramatically improved the ability of severe weather warning in routine operations (Serafin and Wilson 2000); it is also playing an important role in storm-scale data assimilation and model initialization, because it is the only observational network that can resolve convective storms. However, the ana...
متن کاملMulti-Scale EnKF Assimilation of Radar and Conventional Observations and Ensemble Forecasting for a Tornadic Mesoscale Convective System
In recent studies, the authors have successfully demonstrated the ability of an ensemble Kalman filter (EnKF), assimilating real radar observations, to produce skillful analyses and subsequent ensemble-based probabilistic forecasts for a tornadic mesoscale convective system (MCS) that occurred over Oklahoma and Texas on 9 May 2007. The current study expands upon this prior work, performing expe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011